Overview of EPRI (2004, 2006) GMM Review Project

Technical Integration Team
Gabriel Toro - Lead (LCI)
Martin Chapman (VT)
Robin McGuire (LCI)
Bob Youngs (AMEC E&I)

Larry Salomone – Project Manager

USGS National Seismic Hazard Map (NSHMp) Workshop on Ground Motion Prediction Equations (GMPEs)

for the 2014 Update

December 12, 2012

Purpose

- Response to US NRC Letter 5054f requires calculation of Ground Motion Response Spectra (GMRS) for existing commercial nuclear power plant sites
- Calculations are to be based on the recently completed SSHAC 3
 Central and Eastern United States Seismic Source Characterization
 (CEUS SSC) model (NUREG-2115)
- Results of the ongoing SSHAC 3 NGA-East Project will not be available in time to support the response
- Existing EPRI (2004) SSHAC 3 ground motion model (GMM) was completed about 10 years ago
 - Substantial increase in available ground motion data for CEUS
 - A number of newer GMPEs have been developed post 2003
- Review EPRI (2004/2006) in light of new data and models and, if judged appropriate, provide an interim update for use in responding to the 5054f request
- Not intended as a substitute for NGA-East

Phase 1 - Review

- <u>Task 1</u>: Develop Project Plan
- Task 2:
 - Review and process Ground-Motion Database
 - Review New CEUS GMPEs
 - Resource Expert and Proponent Interviews;
- <u>Task 3</u>: Obtain Shear Wave Velocity Measurements at Recording Stations;
- Task 4:
 - Test the EPRI (2004, 2006) Ground Motion Model (GMM) against new data and models
 - Decide if an update is needed

Comparison of EPRI 2004 and NGA East 1 Hz PSA Datasets

GMPEs Used in EPRI (2004) GMM

Cluster	Model Type	Models
1	Single Corner	Hwang and Huo (1997)
	Stochastic (0.275/0.351)	Silva et al (2002) - SC-CS
		Silva et al (2002) - SC-CS-Sat
		Silva et al (2002) - SC-VS
		Toro et al (1997)
		Frankel et al (1996)
2	Double Corner	Atkinson and Boore (1995)
	Stochastic (0.312/0.399)	Silva et al (2002) DC
		Silva et al (2002) DC - Sat
3	Hybrid	Abrahamon & Silva (2002)
	(0.196/0.250)	Atkinson (2001) & Sadigh et al (1997)
		Campbell (2003)
4	Finite Source	Somerville et al. (2001)
	/Greens Function	
	(0.217/0.000)	

New Candidate Models

- Atkinson-Boore (2006 with 2011 revisions: AB06')
 - Recommended by Atkinson and Boore
- Atkinson (2008, with 2011 revisions; A08')
 - Recommended by Atkinson
- Pezeshk et al. (2011)
 - Recommended by Campbell and Pezeshk
- Silva et al. (2003):
 - nearly identical to Silva et al. (2002); treat as equivalent

Task 3: Shear Wave Velocity Measurements

- Augment existing recording site data and ongoing USGS measurement program
- Measured shear wave velocities at 33 recording sites covering a range of locations in the CEUS with

Task 4: Review of 2004 Model Versus Data

- Compute residuals of NGA East database relative to EPRI (2004) cluster median models
 - Use data for sites with measured VS30 and adjust residuals analytically
 - Use data from sites that can be classified as rock
- Results indicated over prediction of ground motions in some magnitude-distancefrequency ranges

Example for EPRI (2004) Cluster 2

Residuals for Investigated Sites - Model: C2, Freq (Hz): 10; Vs30(min): 500

Example for EPRI (2004) Cluster 3

Residuals for Investigated Sites - Model: C3, Freq (Hz): 10; Vs30(min): 500

Recommendation to Update

- Seven (7) of the thirteen (13) developers of the ground motion prediction equations (GMPEs) used in the EPRI (2004, 2006) GMM recommended that their GMPEs be replaced.
- There are three new GMPEs developed by ground motion experts during the past ten (10) years.
- Eighty percent (80%) of the earthquake records in a new ground motion database are from earthquakes that occurred after the development of the EPRI (2004) GMM.
- The EPRI (2004, 2006) GMM over-predicts ground motions at some magnitude-distance-frequency ranges important to nuclear power plant (NPP) probabilistic seismic hazard assessments (PSHAs).

Phase 2 – Approach for Update

- a. Use EPRI (2004) approach of grouping candidate models into clusters
- b. Assess residuals of candidate models using NGA-East database
 - Analytical adjustment of data to EPRI (2004) reference site conditions (2800 m/s, kappa=0.006s) for stations with V_s profiles
 - Empirical adjustments for rock sites grouped into classes based on available information
- c. Develop within-cluster weights using computed residuals
- d. Fit weighted mean In(PSA) for each cluster with an algebraic equation
- e. Generate 3 GMPEs per cluster to represent within-cluster epistemic uncertainty
- f. Develop cluster weights using fit to data and other considerations
- g. Modify for Gulf Coast conditions
- h. Update EPRI (2006) aleatory variability model using final version of NGA (2008) and preliminary results from NGA-West2

Draft New Clusters

Cluster	Model Type	Models
1	Single Corner Brune	Silva et al (2002) - SC-CS-Sat*
	Source	Silva et al (2002) - SC-VS*
		Toro et al (1997)
		Frankel et al (1996)
		* Treated as one model for calculation of weights
2	Complex/Empirical	Silva et al (2002) DC – Sat
	Source	A08'
	~R ⁻¹ Geometrical spreading < 70 km	
3	Complex/Empirical	AB06'
	Source	PZT11
	~R ^{-1.3} Geometrical	
	spreading < 70 km	
4	Finite Source /Green's	Somerville et al. (2001); slightly different
	Function	models for rifted and non-rifted

Example Data Used for Analytical Adjustment: ET.SWET (Tennessee)

Shear Wave Velocity Profile Determined at Station ET.SWET by SASW Method

ET.SWET

Example Analytical Amplification Factors Developed Using ¼ Wavelength Method Including Uncertainty in Vs and kappa

Example of Calculated Spectra

Empirical Adjustments – Site Classes

- Group rock sites into three classes based on available information
 - Hard rock: sites with measured or inferred V_{S30} ≥ 1900 m/s
 - Intermediate rock: sites with measured or inferred $V_{\rm S30}$ 1,000 to 1,900 m/s or consisting of older rock types with unknown $V_{\rm S30}$
 - Soft rock: sites with measured or inferred $V_{\rm S30}$ 500 to 1,000 m/s or consisting of younger/softer rock types with unknown $V_{\rm S30}$

Fit Linear Model to Residuals Using Mixed Effects Allowing for Differences in Scaling Among Site Classes

Analyzed Arkansas & Oklahoma Earthquakes for Potential Differences

Results of Fitting Residuals

- Only "Soft Rock" empirical scaling factor statistically significant
 - Use empirical factor to scale soft rock residuals
 - Use intermediate and hard rock data unscaled to compute weights
- Central Arkansas and Oklahoma earthquakes have lower event terms for 25 and perhaps 10 Hz
 - Lower motions statistically significant for 25 Hz and marginally significant for 10 Hz
 - Could be a source effect or a site effect (higher than average kappa)

Calculation of Within-Cluster weights

Formulation: Relative likelihood of observed data given model computed using mixed - effects covariance matrix with terms for:

- Inter-event (tau) $L = \exp\left(-\frac{\mathbf{\epsilon}^T \mathbf{V}^{-1} \mathbf{\epsilon}}{2}\right)$
- Intra-event (phi)
- Uncertainty in site adjustment for common sites across earthquakes

4 levels of aggregation to obtain weights:

- M-R ranges (according to importance)
- Frequencies (25 Hz to 0.5 Hz, PGA not used)
- Approaches for site adjustment (analytical vs. empirical)
- With and without records from OK-AR earthquakes

Within Cluster Epistemic Uncertainty

- Plan to use envelope of model to model variability and constraints on median predictions provided by data
- Did not use parametric uncertainty of EPRI (2004) because of difficulty in defining correlations

Cluster Weights

- Data based weights computed using relative likelihood averaged over 6 frequencies
- Assessed weights based on assessment of how well the models in a cluster capture current understanding of magnitude and distance scaling
 - Data based weights are not enough as data is limited in magnitude range of interest and many of the newer models are calibrated on that data

Gulf Coast

- Refine region based on on CEUS SSC source regions and discussions with NGA-East path group
- Update Gulf Coast Q model developed from analysis of TA data
- Gulf Coast GMM will be developed using transfer function relative to Mid-Continent in same fashion as EPRI (2004)

Update of EPRI (2006) Aleatory Model

- EPRI (2006) examined potential for differences between WNA and CENA aleatory variability
 - Concluded that event-to-event (tau) may be slightly larger (0.03 units) and within-event (phi) should be similar or slightly smaller (0.03 units)
 - Used average of preliminary NGA results
- For updated model, adopted concept, but will use final NGA (2008) results and preliminary NGA-West 2 values

Status

- Draft Mid-Continent and Gulf Coast models being tested in hazard sensitivity calculations
- Model to be finalized by mid February, 2013
- Report to finalized by end of April, 2013

Acknowledgements

- EPRI Sponsor of project
- PEER NGA-East Project provided strong motion data base and shared data on site conditions, Vs, and crustal regionalization
- USGS provided data on site Vs